
spotify.py
Release 0.10.2

Apr 09, 2021

Contents:

1 What is spotify.py? 3
1.1 Quick example . 3

1.1.1 Introduction . 3
1.1.2 API . 6

2 Indices and tables 43

Index 45

i

ii

spotify.py, Release 0.10.2

Contents: 1

spotify.py, Release 0.10.2

2 Contents:

CHAPTER 1

What is spotify.py?

Spotify.py is a modern, friendly, and Pythonic API library for the Spotify API.

1.1 Quick example

This example shows effectively using the library to iterate over an albums tracks.

import asyncio

import spotify

ALBUM_URI: str = "foo bar baz"
CLIENT_ID: str = "lorem ipsum"
CLIENT_SECRET: str = "dolor sit amet"

async def main(ident: str, secret: str, album_uri: str) -> None:
Useful tip: use a context manager to handle
automatically closing any underlying http sessions
async with spotify.Client(ident, secret) as client:

album = await client.get_album(album_uri)

async for track in album:
print(repr(track))

asyncio.run(main(CLIENT_ID, CLIENT_SECRET, ALBUM_URI))

1.1.1 Introduction

Getting Started

3

spotify.py, Release 0.10.2

API Coverage

Currently the library offers full http api coverage, this includes the regular REST API and the Connect Web API (used
for maniplulating playback smoothly.)

If there is missing coverage of a Spotify API feature feel free to open a Github Issue and we can sort out the imple-
mentation from there.

Concepts

Abstractions!

The library is abstracted into mainly three components:

• The very low level (spotify.http)

• The very high level (spotify.models, spotify.oauth and spotify.utils)

• The synchronous interface (spotify.sync)

spotify.http

The HTTP submodule is ultimately comprised of two main components:

• spotify.http.HTTPClient

• spotify.http.HTTPUserClient

spotify.models

All the models are located under spotify.models.

• spotify.SpotifyBase

• spotify.URIBase

• spotify.Device

• spotify.Context

• spotify.Image

• spotify.Artist

• spotify.Track

• spotify.PlaylistTrack

• spotify.Player

• spotify.Album

• spotify.Library

• spotify.Playlist

• spotify.User

4 Chapter 1. What is spotify.py?

spotify.py, Release 0.10.2

spotify.oauth

The oauth module concerns itself will all OAuth2 related logic.

• spotify.OAuth2

• spotify.get_required_scopes

spotify.utils

The utils module aims to provide usefull helpers.

• spotify.to_id

spotify.sync

The sync module aims to provide a one to one interface with the regular module. Whilst hiding any async/await
shennanigans so that users don’t need to be restricted by their executing environment.

Guidelines

Writing a Query

Queries are mainly done through spotify.Client.search().

Keyword matching

Matching of search keywords is not case-sensitive. Operators, however, should be specified in uppercase. Unless
surrounded by double quotation marks, keywords are matched in any order.

For example:

• q="roadhouse blues" matches both “Blues Roadhouse” and “Roadhouse of the Blues”.

• q="\"roadhouse blues\"" matches “My Roadhouse Blues” but not “Roadhouse of the
Blues”.

Searching

Searching for playlists returns results where the query keyword(s) match any part of the playlist’s name or description.
Only popular public playlists are returned.

Operators

Note: Operators must be specified in uppercase. Otherwise, they are handled as normal keywords to be matched.

The operator NOT can be used to exclude results.

1.1. Quick example 5

spotify.py, Release 0.10.2

For example: q="roadhouse NOT blues" returns items that match “roadhouse” but excludes those that also
contain the keyword “blues”.

Similarly, the OR operator can be used to broaden the search: q="roadhouse OR blues" returns all the results
that include either of the terms.

Warning: Only one OR operator can be used in a query.

Wildcards

The asterisk (*) character can, with some limitations, be used as a wildcard (maximum: 2 per query). It matches a
variable number of non-white-space characters.

It cannot be used:

• in a quoted phrase

• in a field filter

• when there is a dash (-) in the query

• or as the first character of the keyword string Field filters: By default, results are returned when a match is found
in any field of the target object type. Searches can be made more specific by specifying an album, artist or track
field filter.

For example: The query q="album:gold artist:abba", types=["album"] returns only albums with
the text “gold” in the album name and the text “abba” in the artist name.

To limit the results to a particular year, use the field filter year with album, artist, and track searches.

For example: q="bob year:2014"

Or with a date range. For example: q="bob year:1980-2020"

To retrieve only albums released in the last two weeks, use the field filter tag:new in album searches.

To retrieve only albums with the lowest 10% popularity, use the field filter tag:hipster in album searches.

Note: This field filter only works with album searches.

Depending on object types being searched for, other field filters, include genre (applicable to tracks and artists),
upc, and isrc. For example: q="lil genre:\"southern hip hop\", types=["artist"]. Use double
quotation marks around the genre keyword string if it contains spaces.

1.1.2 API

Client

class spotify.Client(client_id: str, client_secret: str, *, loop: Op-
tional[asyncio.events.AbstractEventLoop] = None)

Represents a Client app on Spotify.

This class is used to interact with the Spotify API.

Parameters

• client_id (str) – The client id provided by spotify for the app.

6 Chapter 1. What is spotify.py?

https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

• client_secret (str) – The client secret for the app.

• loop (Optional[asyncio.AbstractEventLoop]) – The event loop the client should
run on, if no loop is specified asyncio.get_event_loop() is called and used instead.

client_id
The applications client_id, also aliased as id

Type str

http
The HTTPClient that is being used.

Type HTTPClient

loop
The event loop the client is running on.

Type Optional[asyncio.AbstractEventLoop]

client_id
str - The Spotify client ID.

close()→ None
Close the underlying HTTP session to Spotify.

get_album(spotify_id: str, *, market: str = ’US’)→ spotify.models.album.Album
Retrive an album with a spotify ID.

Parameters

• spotify_id (str) – The ID to search for.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code

Returns album – The album from the ID

Return type spotify.Album

get_albums(*ids, market: str = ’US’)→ List[spotify.models.album.Album]
Retrive multiple albums with a list of spotify IDs.

Parameters

• ids (List[str]) – the ID to look for

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code

Returns albums – The albums from the IDs

Return type List[Album]

get_artist(spotify_id: str)→ spotify.models.artist.Artist
Retrive an artist with a spotify ID.

Parameters spotify_id (str) – The ID to search for.

Returns artist – The artist from the ID

Return type Artist

get_artists(*ids)→ List[spotify.models.artist.Artist]
Retrive multiple artists with a list of spotify IDs.

Parameters ids (List[str]) – The IDs to look for.

Returns artists – The artists from the IDs

1.1. Quick example 7

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

Return type List[Artist]

get_episode(id: str, market: Optional[str] = ’US’)→ spotify.models.podcast.Episode
Get Spotify catalog information for a single episode identified by its unique Spotify ID.

Parameters

• spotify_id (str) – The spotify_id to for the show.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code.

Returns The episode of the given ID.

Return type episode Episode

get_multiple_shows(ids: List[str], market: Optional[str] = ’US’) →
List[spotify.models.podcast.Show]

Get Spotify catalog information for several shows based on their Spotify IDs.

Parameters

• ids (List[str]) – A list of the Spotify IDs.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code.

Returns shows – The shows from given IDs.

Return type List[:class: Show]

get_track(spotify_id: str)→ spotify.models.track.Track
Retrive an track with a spotify ID.

Parameters spotify_id (str) – The ID to search for.

Returns track – The track from the ID

Return type Track

get_user(spotify_id: str)→ spotify.models.user.User
Retrive an user with a spotify ID.

Parameters spotify_id (str) – The ID to search for.

Returns user – The user from the ID

Return type User

id
str - The Spotify client ID.

oauth2_url(redirect_uri: str, scopes: Union[Iterable[str], Dict[str, bool], None] = None, state: Op-
tional[str] = None)→ str

Generate an oauth2 url for user authentication.

This is an alias to OAuth2.url_only() but the difference is that the client id is autmatically passed in
to the constructor.

Parameters

• redirect_uri (str) – Where spotify should redirect the user to after authentication.

• scopes (Optional[Iterable[str], Dict[str, bool]]) – The scopes to be requested.

• state (Optional[str]) – Using a state value can increase your assurance that an incom-
ing connection is the result of an authentication request.

Returns url – The OAuth2 url.

Return type str

8 Chapter 1. What is spotify.py?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

search(q: str, *, types: Iterable[str] = (’track’, ’playlist’, ’artist’, ’album’), limit: int = 20, offset: int =
0, market: str = ’US’, should_include_external: bool = False)→ spotify.client.SearchResults

Access the spotify search functionality.

>>> results = client.search('Cadet', types=['artist'])
>>> for artist in result.get('artists', []):
... if artist.name.lower() == 'cadet':
... print(repr(artist))
... break

Parameters

• q (str) – the search query

• types (Optional[Iterable[:class:‘str]]) – A sequence of search types (can be any of track,
playlist, artist or album) to refine the search request. A ValueError may be raised if a
search type is found that is not valid.

• limit (Optional[int]) – The limit of search results to return when searching. Maximum
limit is 50, any larger may raise a HTTPException

• offset (Optional[int]) – The offset from where the api should start from in the search
results.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code. Provide this parameter
if you want to apply Track Relinking.

• should_include_external (bool) – If True is specified, the response will include
any relevant audio content that is hosted externally. By default external content is filtered
out from responses.

Returns results – The results of the search.

Return type SearchResults

Raises

• TypeError – Raised when a parameter with a bad type is passed.

• ValueError – Raised when a bad search type is passed with the types argument.

user_from_token(token: str)→ spotify.models.user.User
Create a user session from a token.

Note: This code is equivelent to User.from_token(client, token)

Parameters token (str) – The token to attatch the user session to.

Returns user – The user from the ID

Return type spotify.User

HTTPClient

class spotify.HTTPClient(client_id: str, client_secret: str, loop=None)
A class responsible for handling all HTTP logic.

This class combines a small amount of stateful logic control with the request() method and a very thin
wrapper over the raw HTTP API.

1.1. Quick example 9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

All endpoint methods mirror the default arguments the API uses and is best described as a series of “good
defaults” for the routes.

Parameters

• client_id (str) – The client id provided by spotify for the app.

• client_secret (str) – The client secret for the app.

• loop (Optional[event loop]) – The event loop the client should run on, if no loop
is specified asyncio.get_event_loop() is called and used instead.

loop
The loop the client is running with.

Type AbstractEventLoop

client_id
The client id of the app.

Type str

client_secret
The client secret.

Type str

add_playlist_tracks(playlist_id: str, tracks: Sequence[str], position: Optional[int] = None) →
Awaitable[T_co]

Add one or more tracks to a user’s playlist.

Parameters

• playlist_id (str) – The Spotify ID for the playlist.

• tracks (Sequence[Union[str]]) – A sequence of track URIs.

• position (Optional[int]) – The position to insert the tracks, a zero-based index.

album(spotify_id: str, market: Optional[str] = ’US’)→ Awaitable[T_co]
Get Spotify catalog information for a single album.

Parameters

• spotify_id (str) – The spotify_id to search by.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code.

album_tracks(spotify_id: str, limit: Optional[int] = 20, offset: Optional[int] = 0, market=’US’)→
Awaitable[T_co]

Get Spotify catalog information about an album’s tracks.

Parameters

• spotify_id (str) – The spotify_id to search by.

• limit (Optional[int]) – The maximum number of items to return. Default: 20.
Minimum: 1. Maximum: 50.

• offset (Optiona[int]) – The offset of which Spotify should start yielding from.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code.

albums(spotify_ids, market=’US’)→ Awaitable[T_co]
Get Spotify catalog information for multiple albums identified by their Spotify IDs.

Parameters

10 Chapter 1. What is spotify.py?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

• spotify_ids (List[str]) – The spotify_ids to search by.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code.

artist(spotify_id)→ Awaitable[T_co]
Get Spotify catalog information for a single artist identified by their unique Spotify ID.

Parameters spotify_id (str) – The spotify_id to search by.

artist_albums(spotify_id, include_groups=None, limit: Optional[int] = 20, offset: Optional[int] =
0, market=’US’)

Get Spotify catalog information about an artist’s albums.

Parameters

• spotify_id (str) – The spotify_id to search by.

• include_groups (INCLUDE_GROUPS_TP) – INCLUDE_GROUPS

• limit (Optional[int]) – The maximum number of items to return. Default: 20.
Minimum: 1. Maximum: 50.

• offset (Optiona[int]) – The offset of which Spotify should start yielding from.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code.

artist_related_artists(spotify_id)→ Awaitable[T_co]
Get Spotify catalog information about artists similar to a given artist.

Similarity is based on analysis of the Spotify community’s listening history.

Parameters spotify_id (str) – The spotify_id to search by.

artist_top_tracks(spotify_id, country)→ Awaitable[T_co]
Get Spotify catalog information about an artist’s top tracks by country.

Parameters

• spotify_id (str) – The spotify_id to search by.

• country (COUNTRY_TP) – COUNTRY

artists(spotify_ids)→ Awaitable[T_co]
Get Spotify catalog information for several artists based on their Spotify IDs.

Parameters spotify_id (List[str]) – The spotify_ids to search with.

audio_features(track_ids: List[str])→ Awaitable[T_co]
Get audio features for multiple tracks based on their Spotify IDs.

Parameters track_ids (List[str]) – A comma-separated list of the Spotify IDs for the
tracks. Maximum: 100 IDs.

available_devices()→ Awaitable[T_co]
Get information about a user’s available devices.

categories(limit: Optional[int] = 20, offset: Optional[int] = 0, country=None, locale=None) →
Awaitable[T_co]

Get a list of categories used to tag items in Spotify (on, for example, the Spotify player’s “Browse” tab).

Parameters

• limit (Optional[int]) – The maximum number of items to return. Default: 20.
Minimum: 1. Maximum: 50.

• offset (Optional[int]) – The index of the first item to return. Default: 0

• country (COUNTRY_TP) – COUNTRY

1.1. Quick example 11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

spotify.py, Release 0.10.2

• locale (LOCALE_TP) – LOCALE

category(category_id, country=None, locale=None)→ Awaitable[T_co]
Get a single category used to tag items in Spotify (on, for example, the Spotify player’s “Browse” tab).

Parameters

• category_id (str) – The Spotify category ID for the category.

• country (COUNTRY_TP) – COUNTRY

• locale (LOCALE_TP) – LOCALE

category_playlists(category_id, limit: Optional[int] = 20, offset: Optional[int] = 0, coun-
try=None)→ Awaitable[T_co]

Get a list of Spotify playlists tagged with a particular category.

Parameters

• category_id (str) – The Spotify category ID for the category.

• limit (Optional[int]) – The maximum number of items to return. Default: 20.
Minimum: 1. Maximum: 50.

• offset (Optional[int]) – The index of the first item to return. Default: 0

• country (COUNTRY_TP) – COUNTRY

change_playlist_details(playlist_id: str, *, name: Optional[str] = None, public: Op-
tional[bool] = None, collaborative: Optional[bool] = None, descrip-
tion: Optional[str] = None)→ Awaitable[T_co]

Change a playlist’s name and public/private state. (The user must, of course, own the playlist.)

Parameters

• playlist_id (str) – The Spotify ID for the playlist.

• name (str) – The name for the new playlist

• public (Optional[bool]) – Defaults to true . If true the playlist will be public, if false it
will be private

• collaborative (Optional[bool]) – Defaults to false . If true the playlist will be
collaborative.

Note: to create a collaborative playlist you must also set public to false

• description (Optional[str]) – The value for playlist description as displayed in Spo-
tify Clients and in the Web API.

check_saved_shows(ids: List[str])→ Awaitable[T_co]
Check if one or more shows is already saved in the current Spotify user’s library.

Parameters ids (List[str]) – A list of the Spotify IDs.

close()
Close the underlying HTTP session.

create_playlist(user_id: str, *, name: str, public: Optional[bool] = True, collaborative: Op-
tional[bool] = False, description: Optional[str] = ”)→ Awaitable[T_co]

Create a playlist for a Spotify user. (The playlist will be empty until you add tracks.)

Parameters

• user_id (str) – The user’s Spotify user ID.

12 Chapter 1. What is spotify.py?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

• name (str) – The name for the new playlist

• public (Optional[bool]) – Defaults to true . If true the playlist will be public, if false it
will be private

• collaborative (Optional[bool]) – Defaults to false . If true the playlist will be
collaborative.

Note: to create a collaborative playlist you must also set public to false

• description (Optional[str]) – The value for playlist description as displayed in Spo-
tify Clients and in the Web API.

current_player(*, market: Optional[str] = None)→ Awaitable[T_co]
Get information about the user’s current playback state, including track, track progress, and active device.

Parameters market (Optional[str]) – An ISO 3166-1 alpha-2 country code or the string
from_token. Provide this parameter if you want to apply Track Relinking.

current_playlists(*, limit: Optional[int] = 20, offset: Optional[int] = 0)→ Awaitable[T_co]
Get a list of the playlists owned or followed by the current Spotify user.

Parameters

• limit (Optional[str]) – The maximum number of playlists to return. Default: 20.
Minimum: 1. Maximum: 50.

• offset (Optional[str]) – he index of the first playlist to return. Default: 0 (the first
object). Maximum offset: 100.000.

current_user()→ Awaitable[T_co]
Get detailed profile information about the current user (including the current user’s username).

currently_playing(*, market: Optional[str] = None)→ Awaitable[T_co]
Get the object currently being played on the user’s Spotify account.

Parameters market (Optional[str]) – An ISO 3166-1 alpha-2 country code or the string
from_token. Provide this parameter if you want to apply Track Relinking.

delete_saved_albums(ids: List[str])→ Awaitable[T_co]
Remove one or more albums from the current user’s ‘Your Music’ library.

Parameters ids (List[str]) – A list of the Spotify IDs.

delete_saved_tracks(ids: List[str])→ Awaitable[T_co]
Remove one or more tracks from the current user’s ‘Your Music’ library.

Parameters ids (List[str]) – A list of the Spotify IDs.

featured_playlists(locale=None, country=None, timestamp=None, limit: Optional[int] = 20,
offset: Optional[int] = 0)

Get a list of Spotify featured playlists (shown, for example, on a Spotify player’s ‘Browse’ tab).

Parameters

• locale (LOCALE_TP) – LOCALE

• country (COUNTRY_TP) – COUNTRY

• timestamp (TIMESTAMP_TP) – TIMESTAMP

• limit (Optional[int]) – The maximum number of items to return. Default: 20.
Minimum: 1. Maximum: 50.

1.1. Quick example 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

spotify.py, Release 0.10.2

• offset (Optional[int]) – The index of the first item to return. Default: 0

follow_artist_or_user(type_: str, ids: List[str])→ Awaitable[T_co]
Add the current user as a follower of one or more artists or other Spotify users.

Parameters

• type (str) – either artist or user.

• ids (List[str]) – A list of the artist or the user Spotify IDs.

follow_playlist(playlist_id: str, *, public: Optional[bool] = True)→ Awaitable[T_co]
Add the current user as a follower of a playlist.

Parameters

• playlist_id (str) – The Spotify ID of the playlist. Any playlist can be followed,
regardless of its public/private status, as long as you know its playlist ID.

• public (Optional[bool]) – Defaults to true. If true the playlist will be included in user’s
public playlists, if false it will remain private.

followed_artists(*, limit: Optional[int] = 20, after: Optional[str] = None)→ Awaitable[T_co]
Get the current user’s followed artists.

Parameters

• limit (Optional[int]) – The maximum number of items to return. Default: 20. Mini-
mum: 1. Maximum: 50.

• after (Optional[str]) – The last artist ID retrieved from the previous request.

following_artists_or_users(ids, *, type_=’artist’)→ Awaitable[T_co]
Check to see if the current user is following one or more artists or other Spotify users.

Parameters

• ids (List[str]) – A comma-separated list of the artist or the user Spotify IDs to check.
A maximum of 50 IDs can be sent in one request.

• type (Optional[str]) – The ID type: either “artist” or “user”. Default: “artist”

following_playlists(playlist_id: str, ids: List[str])→ Awaitable[T_co]
Check to see if one or more Spotify users are following a specified playlist.

Parameters

• playlist_id (str) – The Spotify ID of the playlist.

• ids (List[str]) – A list of the artist or the user Spotify IDs. A maximum of five IDs are
allowed.

get_bearer_info(client_id: Optional[str] = None, client_secret: Optional[str] = None, session:
Optional[aiohttp.client.ClientSession] = None)

Get the application bearer token from client_id and client_secret.

Raises SpotifyException – This will be raised when either client_id or client_secret is
None

get_episode(spotify_id: str, market: Optional[str] = ’US’)→ Awaitable[T_co]
Get Spotify catalog information for a single episode identified by its unique Spotify ID.

Parameters

• spotify_id (str) – The spotify_id to for the show.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code.

14 Chapter 1. What is spotify.py?

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

get_multiple_episodes(ids: List[str], market: Optional[str] = ’US’)→ Awaitable[T_co]
Get Spotify catalog information for several episodes based on their Spotify IDs.

Parameters

• ids (List[str]) – A list of the Spotify IDs.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code.

get_multiple_shows(ids: List[str], market: Optional[str] = ’US’)→ Awaitable[T_co]
Get Spotify catalog information for several shows based on their Spotify IDs.

Parameters

• ids (List[str]) – A list of the Spotify IDs.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code.

get_playlist(playlist_id: str, *, fields: Optional[str] = None, market: Optional[str] = None) →
Awaitable[T_co]

Get a playlist owned by a Spotify user.

Parameters

• playlist_id (str) – The Spotify ID for the playlist.

• fields (Optional[str]) – Filters for the query: a comma-separated list of the fields to
return. If omitted, all fields are returned. For example, to get just the total number of tracks
and the request limit: fields=total,limit

A dot separator can be used to specify non-reoccurring fields, while parentheses can be
used to specify reoccurring fields within objects. For example, to get just the added date
and user ID of the adder: fields=items(added_at,added_by.id)

Use multiple parentheses to drill down into nested objects, for example:
fields=items(track(name,href,album(name,href)))

Fields can be excluded by prefixing them with an exclamation mark, for example:
fields=items.track.album(!external_urls,images)

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code or the string
“from_token”. Provide this parameter if you want to apply Track Relinking.

get_playlist_cover_image(playlist_id: str)→ Awaitable[T_co]
Get the current image associated with a specific playlist.

Parameters playlist_id (str) – The Spotify ID for the playlist.

get_playlist_tracks(playlist_id: str, *, fields: Optional[str] = None, market: Optional[str]
= None, limit: Optional[int] = 20, offset: Optional[int] = 0) → Await-
able[T_co]

Get full details of the tracks of a playlist owned by a Spotify user.

Parameters

• playlist_id (str) – The Spotify ID for the playlist.

• fields (Optional[str]) – Filters for the query: a comma-separated list of the fields to
return. If omitted, all fields are returned. For example, to get just the total number of tracks
and the request limit: fields=total,limit

A dot separator can be used to specify non-reoccurring fields, while parentheses can be
used to specify reoccurring fields within objects. For example, to get just the added date
and user ID of the adder: fields=items(added_at,added_by.id)

1.1. Quick example 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

Use multiple parentheses to drill down into nested objects, for example:
fields=items(track(name,href,album(name,href)))

Fields can be excluded by prefixing them with an exclamation mark, for example:
fields=items.track.album(!external_urls,images)

• limit (Optional[str]) – The maximum number of tracks to return. Default: 100. Mini-
mum: 1. Maximum: 100.

• offset (Optional[str]) – The index of the first track to return. Default: 0 (the first
object).

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code or the string
“from_token”. Provide this parameter if you want to apply Track Relinking.

get_playlists(user_id: str, *, limit: Optional[int] = 20, offset: Optional[int] = 0) → Await-
able[T_co]

Get a list of the playlists owned or followed by a Spotify user.

Parameters

• user_id (str) – The user’s Spotify user ID.

• limit (Optional[str]) – The maximum number of playlists to return. Default: 20.
Minimum: 1. Maximum: 50.

• offset (Optional[str]) – he index of the first playlist to return. Default: 0 (the first
object). Maximum offset: 100.000.

get_saved_shows(limit: int = 20, offset: int = 0)→ Awaitable[T_co]
Get a list of shows saved in the current Spotify user’s library. Optional parameters can be used to limit the
number of shows returned.

Parameters

• limit (Optional[int]) – The maximum number of items to return. Default: 20.
Minimum: 1. Maximum: 50.

• offset (Optiona[int]) – The offset of which Spotify should start yielding from.

get_show(spotify_id: str, market: Optional[str] = ’US’)→ Awaitable[T_co]
Get Spotify catalog information for a single show identified by its unique Spotify ID.

Parameters

• spotify_id (str) – The spotify_id to for the show.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code.

get_shows_episodes(spotify_id: str, market: Optional[str] = ’US’, limit: int = 20, offset: int = 0)
→ Awaitable[T_co]

Get Spotify catalog information about an show’s episodes. Optional parameters can be used to limit the
number of episodes returned.

Parameters

• spotify_id (str) – The spotify_id to for the show.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code.

• limit (Optional[int]) – The maximum number of items to return. Default: 20.
Minimum: 1. Maximum: 50.

• offset (Optiona[int]) – The offset of which Spotify should start yielding from.

16 Chapter 1. What is spotify.py?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

spotify.py, Release 0.10.2

is_saved_album(ids: List[str])→ Awaitable[T_co]
Check if one or more albums is already saved in the current Spotify user’s ‘Your Music’ library.

Parameters ids (List[str]) – A list of the Spotify IDs.

is_saved_track(ids: List[str])→ Awaitable[T_co]
Check if one or more tracks is already saved in the current Spotify user’s ‘Your Music’ library.

Parameters ids (List[str]) – A list of the Spotify IDs.

new_releases(*, country=None, limit: Optional[int] = 20, offset: Optional[int] = 0) → Await-
able[T_co]

Get a list of new album releases featured in Spotify (shown, for example, on a Spotify player’s “Browse”
tab).

Parameters

• limit (Optional[int]) – The maximum number of items to return. Default: 20.
Minimum: 1. Maximum: 50.

• offset (Optional[int]) – The index of the first item to return. Default: 0

• country (COUNTRY_TP) – COUNTRY

pause_playback(*, device_id: Optional[str] = None)→ Awaitable[T_co]
Pause playback on the user’s account.

Parameters device_id (Optional[str]) – The id of the device this command is targeting. If
not supplied, the user’s currently active device is the target.

play_playback(context_uri: Union[str, Sequence[str]], *, offset: Union[str, int, None] = None, de-
vice_id: Optional[str] = None, position_ms: Optional[int] = 0)→ Awaitable[T_co]

Start a new context or resume current playback on the user’s active device.

Note: In order to resume playback set the context_uri to None.

Parameters

• context_uri (Union[str, Sequence[str]]) – The context to play, if it is a string then it
must be a uri of a album, artist or playlist.

Otherwise a sequece of strings can be passed in and they must all be track URIs

• offset (Optional[Union[str, int]]) – The offset of which to start from, must either be
an integer or a track URI.

• device_id (Optional[str]) – The id of the device this command is targeting. If not
supplied, the user’s currently active device is the target.

• position_ms (Optional[int]) – indicates from what position to start playback. Must
be a positive number. Passing in a position that is greater than the length of the track will
cause the player to start playing the next song.

playback_queue(*, uri: str, device_id: Optional[str] = None)→ Awaitable[T_co]
Add an item to the end of the user’s current playback queue.

Parameters

• uri (str) – The uri of the item to add to the queue. Must be a track or an episode uri.

• device_id (str) – The id of the device this command is targeting. If not supplied, the
user’s currently active device is the target.

1.1. Quick example 17

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

recently_played(*, limit: Optional[int] = 20, before: Optional[str] = None, after: Optional[str] =
None)→ Awaitable[T_co]

Get tracks from the current user’s recently played tracks.

Returns the most recent 50 tracks played by a user. Note that a track currently playing will not be visible
in play history until it has completed. A track must be played for more than 30 seconds to be included in
play history.

Any tracks listened to while the user had “Private Session” enabled in their client will not be returned in
the list of recently played tracks.

The endpoint uses a bidirectional cursor for paging. Follow the next field with the before parameter to
move back in time, or use the after parameter to move forward in time. If you supply no before or after
parameter, the endpoint will return the most recently played songs, and the next link will page back in
time.

Parameters

• limit (Optional[int]) – The maximum number of items to return. Default: 20. Mini-
mum: 1. Maximum: 50.

• after (Optional[str]) – A Unix timestamp in milliseconds. Returns all items after (but
not including) this cursor position. If after is specified, before must not be specified.

• before (Optional[str]) – A Unix timestamp in milliseconds. Returns all items before
(but not including) this cursor position. If before is specified, after must not be specified.

recommendations(seed_artists, seed_genres, seed_tracks, *, limit: Optional[int] = 20, mar-
ket=None, **filters)

Get Recommendations Based on Seeds.

Parameters

• seed_artists (str) – A comma separated list of Spotify IDs for seed artists. Up to 5
seed values may be provided.

• seed_genres (str) – A comma separated list of any genres in the set of available
genre seeds. Up to 5 seed values may be provided.

• seed_tracks (str) – A comma separated list of Spotify IDs for a seed track. Up to 5
seed values may be provided.

• limit (Optional[int]) – The maximum number of items to return. Default: 20.
Minimum: 1. Maximum: 50.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code.

• max_* (Optional[Keyword arguments]) – For each tunable track attribute, a
hard ceiling on the selected track attribute’s value can be provided.

• min_* (Optional[Keyword arguments]) – For each tunable track attribute, a
hard floor on the selected track attribute’s value can be provided.

• target_* (Optional[Keyword arguments]) – For each of the tunable track at-
tributes (below) a target value may be provided.

remove_playlist_tracks(playlist_id: str, tracks: Sequence[Union[str, Dict[str, Any]]], *, snap-
shot_id: str = None)→ Awaitable[T_co]

Remove one or more tracks from a user’s playlist.

Parameters

• playlist_id (str) – The id of the playlist to target

18 Chapter 1. What is spotify.py?

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

• tracks (Sequence[Union[str, Dict[str, Union[str, int]]]]) – Ei-
ther a sequence of track URIs to remove a specific occurence of a track or for targeted
removal pass in a dict that looks like {‘uri’: URI, ‘position’: POSITIONS} where URI is
track URI and POSITIONS is an list of integers

• snapshot_id (Optional[str]) – The snapshot to target.

remove_saved_shows(ids: List[str], market: Optional[str] = ’US’)→ Awaitable[T_co]
Delete one or more shows from current Spotify user’s library.

Parameters

• ids (List[str]) – A list of the Spotify IDs.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code.

reorder_playlists_tracks(playlist_id: str, range_start: int, range_length: int, insert_before:
int, *, snapshot_id: Optional[str] = None)→ Awaitable[T_co]

Reorder a track or a group of tracks in a playlist.

Visualization of how reordering tracks works

images/visualization-reordering-tracks.png

Note: When reordering tracks, the timestamp indicating when they were added and the user who added
them will be kept untouched. In addition, the users following the playlists won’t be notified about changes
in the playlists when the tracks are reordered.

Parameters

• playlist_id (str) – The Spotify ID for the playlist.

• range_start (int) – The position of the first track to be reordered.

• range_length (int) – The amount of tracks to be reordered. Defaults to 1 if not set.

The range of tracks to be reordered begins from the range_start position, and includes the
range_length subsequent tracks.

• insert_before (int) – The position where the tracks should be inserted.

To reorder the tracks to the end of the playlist, simply set insert_before to the position after
the last track.

• snapshot_id (Optional[str]) – The playlist’s snapshot ID against which you want to
make the changes.

repeat_playback(state: str, *, device_id: Optional[str] = None)→ Awaitable[T_co]
Set the repeat mode for the user’s playback. Options are repeat-track, repeat-context, and off.

Parameters

• state (str) –

“track”, “context” or “off”.

– track will repeat the current track.

1.1. Quick example 19

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

– context will repeat the current context.

– off will turn repeat off.

• device_id (Optional[str]) – The id of the device this command is targeting. If
not supplied, the user’s currently active device is the target.

replace_playlist_tracks(playlist_id: str, tracks: Sequence[str])→ Awaitable[T_co]
Replace all the tracks in a playlist, overwriting its existing tracks.

Note: This powerful request can be useful for replacing tracks, re-ordering existing tracks, or clearing
the playlist.

Parameters

• playlist_id (str) – The Spotify ID for the playlist.

• tracks (Sequence[str]) – A list of tracks to replace with.

request(route, **kwargs)
Make a request to the spotify API with the current bearer credentials.

Parameters

• route (Tuple[str, str]) – A tuple of the method and url gained from
route().

• **kwargs (Any) – keyword arguments to pass into aiohttp.
ClientSession.request

static route(method: str, path: str, *, base: str = ’https://api.spotify.com/v1’, **kwargs) → Tu-
ple[str, str]

Used for constructing URLs for API endpoints.

Parameters

• method (str) – The HTTP/REST method used.

• path (str) – A path to be formatted.

• kwargs (Any) – The arguments used to format the path.

Returns route – A tuple of the method and formatted url path to use.

Return type Tuple[str, str]

save_albums(ids: List[str])→ Awaitable[T_co]
Save one or more albums to the current user’s ‘Your Music’ library.

Parameters ids (List[str]) – A list of the Spotify IDs.

save_shows(ids: List[str])→ Awaitable[T_co]
Save one or more shows to current Spotify user’s library.

Parameters ids (List[str]) – A list of the Spotify IDs.

save_tracks(ids: List[str])→ Awaitable[T_co]
Save one or more tracks to the current user’s ‘Your Music’ library.

Parameters ids (List[str]) – A list of the Spotify IDs.

saved_albums(*, limit: Optional[int] = 20, offset: Optional[int] = 0, market: Optional[str] = None)
→ Awaitable[T_co]

Get a list of the albums saved in the current Spotify user’s ‘Your Music’ library.

20 Chapter 1. What is spotify.py?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

Parameters

• limit (Optional[str]) – The maximum number of objects to return. Default: 20.
Minimum: 1. Maximum: 50.

• offset (Optional[str]) – The index of the first object to return. Default: 0 (i.e.,
the first object). Use with limit to get the next set of objects.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code or the string
from_token. Provide this parameter if you want to apply Track Relinking.

saved_tracks(*, limit: Optional[int] = 20, offset: Optional[int] = 0, market: Optional[str] = None)
→ Awaitable[T_co]

Get a list of the songs saved in the current Spotify user’s ‘Your Music’ library.

Parameters

• limit (Optional[str]) – The maximum number of objects to return. Default: 20.
Minimum: 1. Maximum: 50.

• offset (Optional[str]) – The index of the first object to return. Default: 0 (i.e.,
the first object). Use with limit to get the next set of objects.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code or the string
from_token. Provide this parameter if you want to apply Track Relinking.

search(q: str, query_type: str = ’track, playlist, artist, album’, market: str = ’US’, limit: int = 20,
offset: int = 0, include_external: Optional[str] = None)→ Awaitable[T_co]

Get Spotify Catalog information about artists, albums, tracks or playlists that match a keyword string.

Parameters

• q (str) – Search query keywords and optional field filters and operators. e.g. road-
house blues.

• query_type (Optional[str]) – A comma-separated list of item types to search
across. (default: “track,playlist,artist,album”) Valid types are: album, artist, playlist,
and track. Search results include hits from all the specified item types.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code or the string
“from_token”. (default: “US”) If a country code is specified, only artists, albums,
and tracks with content that is playable in that market is returned.

Note:

– Playlist results are not affected by the market parameter.

– If market is set to “from_token”, and a valid access token is specified in the request header, only
content playable in the country associated with the user account, is returned.

– Users can view the country that is associated with their account in the account settings. A user must
grant access to the user-read-private scope prior to when the access token is
issued.

• limit (Optional[int]) – Maximum number of results to return. (Default: 20, Min-
imum: 1, Maximum: 50)

Note: The limit is applied within each type, not on the total response. For example,
if the limit value is 3 and the type is artist,album, the response contains 3 artists and 3
albums.

1.1. Quick example 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

spotify.py, Release 0.10.2

• offset (Optional[int]) – The index of the first result to return. Default: 0 (the first
result). Maximum offset (including limit): 10,000. Use with limit to get the next page
of search results.

• include_external (Optional[str]) – Possible values: audio If in-
clude_external=audio is specified the response will include any relevant audio
content that is hosted externally. By default external content is filtered out from
responses.

seek_playback(position_ms: int, *, device_id: Optional[str] = None)→ Awaitable[T_co]
Seeks to the given position in the user’s currently playing track.

Parameters

• position_ms (int) – The position in milliseconds to seek to. Must be a positive
number. Passing in a position that is greater than the length of the track will cause the
player to start playing the next song.

• device_id (Optional[str]) – The id of the device this command is targeting. If
not supplied, the user’s currently active device is the target.

set_playback_volume(volume: int, *, device_id: Optional[str] = None)→ Awaitable[T_co]
Set the volume for the user’s current playback device.

Parameters

• volume (int) – The volume to set. Must be a value from 0 to 100 inclusive.

• device_id (Optional[str]) – The id of the device this command is targeting. If
not supplied, the user’s currently active device is the target.

shuffle_playback(state: bool, *, device_id: Optional[str] = None)→ Awaitable[T_co]
Toggle shuffle on or off for user’s playback.

Parameters

• state (bool) – True : Shuffle user’s playback False : Do not shuffle user’s play-
back.

• device_id (Optional[str]) – The id of the device this command is targeting. If
not supplied, the user’s currently active device is the target.

skip_next(*, device_id: Optional[str] = None)→ Awaitable[T_co]
Skips to next track in the user’s queue.

Parameters device_id (Optional[str]) – The id of the device this command is targeting.
If not supplied, the user’s currently active device is the target.

skip_previous(*, device_id: Optional[str] = None)→ Awaitable[T_co]
Skips to previous track in the user’s queue.

Parameters device_id (Optional[str]) – The id of the device this command is targeting.
If not supplied, the user’s currently active device is the target.

top_artists_or_tracks(type_: str, *, limit: Optional[int] = 20, offset: Optional[int] = 0,
time_range: Optional[str] = None)→ Awaitable[T_co]

Get the current user’s top artists or tracks based on calculated affinity.

Affinity is a measure of the expected preference a user has for a particular track or artist. It is based on
user behavior, including play history, but does not include actions made while in incognito mode. Light
or infrequent users of Spotify may not have sufficient play history to generate a full affinity data set.

As a user’s behavior is likely to shift over time, this preference data is available over three time spans.

22 Chapter 1. What is spotify.py?

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

For each time range, the top 50 tracks and artists are available for each user. In the future, it is likely that
this restriction will be relaxed. This data is typically updated once each day for each user.

Parameters

• type (:class;`str`) – The type of entity to return. Valid values: “artists” or
“tracks”.

• limit (Optional[int]) – The number of entities to return. Default: 20. Minimum:
1. Maximum: 50. For example: limit=2

• offset (Optional[int]) – The index of the first entity to return. Default: 0 (i.e., the
first track). Use with limit to get the next set of entities.

• time_range (Optional[str]) – Over what time frame the affinities are computed.
Valid values: - “long_term” (calculated from several years of data and including all
new data as it becomes available) - “medium_term” (approximately last 6 months) -
“short_term” (approximately last 4 weeks). Default: medium_term.

track(track_id: str, market: Optional[str] = None)→ Awaitable[T_co]
Get Spotify catalog information for a single track identified by its unique Spotify ID.

Parameters

• track_id (str) – The Spotify ID for the track.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code or the string
“from_token”. Provide this parameter if you want to apply Track Relinking.

track_audio_analysis(track_id: str)→ Awaitable[T_co]
Get a detailed audio analysis for a single track identified by its unique Spotify ID.

The Audio Analysis endpoint provides low-level audio analysis for all of the tracks in the Spotify catalog.
The Audio Analysis describes the track’s structure and musical content, including rhythm, pitch, and
timbre. All information is precise to the audio sample.

Many elements of analysis include confidence values, a floating-point number ranging from 0.0 to 1.0.
Confidence indicates the reliability of its corresponding attribute. Elements carrying a small confidence
value should be considered speculative. There may not be sufficient data in the audio to compute the
attribute with high certainty.

Parameters track_id (str) – The Spotify ID for the track.

track_audio_features(track_id: str)→ Awaitable[T_co]
Get audio feature information for a single track identified by its unique Spotify ID.

Parameters track_id (str) – The Spotify ID for the track.

tracks(track_ids: List[str], market: Optional[str] = None)→ Awaitable[T_co]
Get Spotify catalog information for multiple tracks based on their Spotify IDs.

Parameters

• track_ids (List[str]) – A comma-separated list of the Spotify IDs for the tracks.
Maximum: 50 IDs.

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code or the string
“from_token”. Provide this parameter if you want to apply Track Relinking.

transfer_player(device_id: str, *, play: Optional[bool] = False)→ Awaitable[T_co]
Transfer playback to a new device and determine if it should start playing.

Parameters

• device_id (str) – A Spotify Device ID

1.1. Quick example 23

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

• play (Optional[bool]) – True: ensure playback happens on new device. False or
not provided: keep the current playback state.

unfollow_artists_or_users(type_: str, ids: List[str])→ Awaitable[T_co]
Remove the current user as a follower of one or more artists or other Spotify users.

Parameters

• type (str) – either artist or user.

• ids (List[str]) – A list of the artist or the user Spotify IDs.

unfollow_playlist(playlist_id: str)→ Awaitable[T_co]
Remove the current user as a follower of a playlist.

Parameters playlist_id (str) – The Spotify ID of the playlist that is to be no longer
followed.

upload_playlist_cover_image(playlist_id: str, file: BinaryIO)→ Awaitable[T_co]
Replace the image used to represent a specific playlist.

Parameters

• playlist_id (str) – The Spotify ID for the playlist.

• file (File-like object) – An file-like object that supports reading the con-
tents that are being read should be bytes

user(user_id: str)→ Awaitable[T_co]
Get public profile information about a Spotify user.

Parameters user_id (class:str) – The user’s Spotify user ID.

Models

Album

class spotify.Album(client, data)
A Spotify Album.

artists
The artists for the album.

Type List[Artist]

id
The ID of the album.

Type str

name
The name of the album.

Type str

href
The HTTP API URL for the album.

Type str

uri
The URI for the album.

Type str

24 Chapter 1. What is spotify.py?

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

album_group
ossible values are “album”, “single”, “compilation”, “appears_on”. Compare to album_type this field
represents relationship between the artist and the album.

Type str

album_type
The type of the album: one of “album” , “single” , or “compilation”.

Type str

release_date
The date the album was first released.

Type str

release_date_precision
The precision with which release_date value is known: year, month or day.

Type str

genres
A list of the genres used to classify the album.

Type List[str]

label
The label for the album.

Type str

popularity
The popularity of the album. The value will be between 0 and 100, with 100 being the most popular.

Type int

copyrights
The copyright statements of the album.

Type List[Dict]

markets
The markets in which the album is available: ISO 3166-1 alpha-2 country codes.

Type List[str]

get_all_tracks(*, market: Optional[str] = ’US’)→ List[spotify.models.track.Track]
loads all of the albums tracks, depending on how many the album has this may be a long operation.

Parameters market (Optional[str]) – An ISO 3166-1 alpha-2 country code. Provide
this parameter if you want to apply Track Relinking.

Returns tracks – The tracks of the artist.

Return type List[spotify.Track]

get_tracks(*, limit: Optional[int] = 20, offset: Optional[int] = 0) →
List[spotify.models.track.Track]

get the albums tracks from spotify.

Parameters

• limit (Optional[int]) – The limit on how many tracks to retrieve for this al-
bum (default is 20).

• offset (Optional[int]) – The offset from where the api should start from in
the tracks.

1.1. Quick example 25

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

spotify.py, Release 0.10.2

Returns tracks – The tracks of the artist.

Return type List[Track]

Artist

class spotify.Artist(client, data)
A Spotify Artist.

id
The Spotify ID of the artist.

Type str

uri
The URI of the artist.

Type str

url
The open.spotify URL.

Type str

href
A link to the Web API endpoint providing full details of the artist.

Type str

name
The name of the artist.

Type str

genres
A list of the genres the artist is associated with. For example: “Prog Rock” , “Post-Grunge”. (If not yet
classified, the array is empty.)

Type List[str]

followers
The total number of followers.

Type Optional[int]

popularity
The popularity of the artist. The value will be between 0 and 100, with 100 being the most popular. The
artist’s popularity is calculated from the popularity of all the artist’s tracks.

Type int

images
Images of the artist in various sizes, widest first.

Type List[Image]

get_albums(*, limit: Optional[int] = 20, offset: Optional[int] = 0, include_groups=None, market:
Optional[str] = None)→ List[spotify.Album]

Get the albums of a Spotify artist.

Parameters

• limit (Optional[int]) – The maximum number of items to return. Default:
20. Minimum: 1. Maximum: 50.

26 Chapter 1. What is spotify.py?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

spotify.py, Release 0.10.2

• offset (Optiona[int]) – The offset of which Spotify should start yielding from.

• include_groups (INCLUDE_GROUPS_TP) – INCLUDE_GROUPS

• market (Optional[str]) – An ISO 3166-1 alpha-2 country code.

Returns albums – The albums of the artist.

Return type List[Album]

get_all_albums(*, market=’US’)→ List[spotify.Album]
loads all of the artists albums, depending on how many the artist has this may be a long operation.

Parameters market (Optional[str]) – An ISO 3166-1 alpha-2 country code.

Returns albums – The albums of the artist.

Return type List[Album]

related_artists()→ List[spotify.models.artist.Artist]
Get Spotify catalog information about artists similar to a given artist.

Similarity is based on analysis of the Spotify community’s listening history.

Returns artists – The artists deemed similar.

Return type List[Artist]

top_tracks(country: str = ’US’)→ List[spotify.Track]
Get Spotify catalog information about an artist’s top tracks by country.

Parameters country (str) – The country to search for, it defaults to ‘US’.

Returns tracks – The artists top tracks.

Return type List[Track]

total_albums(*, market: str = None)→ int
get the total amout of tracks in the album.

Parameters market (Optional[str]) – An ISO 3166-1 alpha-2 country code.

Returns total – The total amount of albums.

Return type int

User

class spotify.User(client: spotify.Client, data: dict, **kwargs)
A Spotify User.

id
The Spotify user ID for the user.

Type str

uri
The Spotify URI for the user.

Type str

url
The open.spotify URL.

Type str

1.1. Quick example 27

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

href
A link to the Web API endpoint for this user.

Type str

display_name
The name displayed on the user’s profile. None if not available.

Type str

followers
The total number of followers.

Type int

images
The user’s profile image.

Type List[Image]

email
The user’s email address, as entered by the user when creating their account.

Type str

country
The country of the user, as set in the user’s account profile. An ISO 3166-1 alpha-2 country code.

Type str

birthdate
The user’s date-of-birth.

Type str

product
The user’s Spotify subscription level: “premium”, “free”, etc. (The subscription level “open” can be
considered the same as “free”.)

Type str

add_tracks(playlist: Union[str, spotify.models.playlist.Playlist], *tracks)→ str
Add one or more tracks to a user’s playlist.

Parameters

• playlist (Union[str, Playlist]) – The playlist to modify

• tracks (Sequence[Union[str, Track]]) – Tracks to add to the playlist

Returns snapshot_id – The snapshot id of the playlist.

Return type str

create_playlist(name, *, public=True, collaborative=False, description=None)
Create a playlist for a Spotify user.

Parameters

• name (str) – The name of the playlist.

• public (Optional[bool]) – The public/private status of the playlist. True for
public, False for private.

• collaborative (Optional[bool]) – If True, the playlist will become collab-
orative and other users will be able to modify the playlist.

28 Chapter 1. What is spotify.py?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

spotify.py, Release 0.10.2

• description (Optional[str]) – The playlist description

Returns playlist – The playlist that was created.

Return type Playlist

currently_playing() → Dict[str, Union[spotify.models.track.Track, spo-
tify.models.common.Context, str]]

Get the users currently playing track.

Returns context, track – A tuple of the context and track.

Return type Dict[str, Union[Track, Context, str]]

edit_playlist(playlist, *, name=None, public=None, collaborative=None, description=None)
Change a playlist’s name and public/private, collaborative state and description.

Parameters

• playlist (Union[str, Playlist]) – The playlist to modify

• name (Optional[str]) – The new name of the playlist.

• public (Optional[bool]) – The public/private status of the playlist. True for
public, False for private.

• collaborative (Optional[bool]) – If True, the playlist will become collab-
orative and other users will be able to modify the playlist.

• description (Optional[str]) – The new playlist description

follow_playlist(playlist: Union[str, spotify.models.playlist.Playlist], *, public: bool = True) →
None

follow a playlist

Parameters

• playlist (Union[str, Playlist]) – The playlist to modify

• public (Optional[bool]) – The public/private status of the playlist. True for
public, False for private.

classmethod from_code(client: spotify.Client, code: str, *, redirect_uri: str)
Create a User object from an authorization code.

Parameters

• client (spotify.Client) – The spotify client to associate the user with.

• code (str) – The authorization code to use to further authenticate the user.

• redirect_uri (str) – The rediriect URI to use in tandem with the authorization
code.

classmethod from_refresh_token(client: spotify.Client, refresh_token: str)
Create a User object from a refresh token. It will poll the spotify API for a new access token and use
that to initialize the spotify user.

Parameters

• client (spotify.Client) – The spotify client to associate the user with.

• refresh_token (str) – Used to acquire token.

classmethod from_token(client: spotify.Client, token: Optional[str], refresh_token: Op-
tional[str] = None)

Create a User object from an access token.

1.1. Quick example 29

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

Parameters

• client (spotify.Client) – The spotify client to associate the user with.

• token (str) – The access token to use for http requests.

• refresh_token (str) – Used to acquire new token when it expires.

get_all_playlists()→ List[spotify.models.playlist.Playlist]
Get all of the users playlists from spotify.

Returns playlists – A list of the users playlists.

Return type List[Playlist]

get_devices()→ List[spotify.models.common.Device]
Get information about the users avaliable devices.

Returns devices – The devices the user has available.

Return type List[Device]

get_player()→ spotify.models.player.Player
Get information about the users current playback.

Returns player – A player object representing the current playback.

Return type Player

get_playlists(*, limit: int = 20, offset: int = 0)→ List[spotify.models.playlist.Playlist]
get the users playlists from spotify.

Parameters

• limit (Optional[int]) – The limit on how many playlists to retrieve for this
user (default is 20).

• offset (Optional[int]) – The offset from where the api should start from in
the playlists.

Returns playlists – A list of the users playlists.

Return type List[Playlist]

get_podcasts(*, limit: int = 20, offset: int = 0)→ List[spotify.models.podcast.Podcast]
Get the current user’s saved podcasts, shows.

Parameters

• limit (Optional[int]) – The number of entities to return. Default: 20. Mini-
mum: 1. Maximum: 50.

• offset (Optional[int]) – The index of the first entity to return. Default: 0

Returns podcasts – The saved podcasts of the user.

Return type List[Podcast]

recently_played(*, limit: int = 20, before: Optional[str] = None, after: Op-
tional[str] = None) → List[Dict[str, Union[spotify.models.track.Track, spo-
tify.models.common.Context, str]]]

Get tracks from the current users recently played tracks.

Returns playlist_history – A list of playlist history object. Each object is a dict with a times-
tamp, track and context field.

Return type List[Dict[str, Union[Track, Context, str]]]

30 Chapter 1. What is spotify.py?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

remove_tracks(playlist, *tracks)
Remove one or more tracks from a user’s playlist.

Parameters

• playlist (Union[str, Playlist]) – The playlist to modify

• tracks (Sequence[Union[str, Track]]) – Tracks to remove from the playlist

Returns snapshot_id – The snapshot id of the playlist.

Return type str

reorder_tracks(playlist, start, insert_before, length=1, *, snapshot_id=None)
Reorder a track or a group of tracks in a playlist.

Parameters

• playlist (Union[str, Playlist]) – The playlist to modify

• start (int) – The position of the first track to be reordered.

• insert_before (int) – The position where the tracks should be inserted.

• length (Optional[int]) – The amount of tracks to be reordered. Defaults to 1
if not set.

• snapshot_id (str) – The playlist’s snapshot ID against which you want to make
the changes.

Returns snapshot_id – The snapshot id of the playlist.

Return type str

replace_tracks(playlist, *tracks)→ None
Replace all the tracks in a playlist, overwriting its existing tracks.

This powerful request can be useful for replacing tracks, re-ordering existing tracks, or clearing the
playlist.

Parameters

• playlist (Union[str, PLaylist]) – The playlist to modify

• tracks (Sequence[Union[str, Track]]) – Tracks to place in the playlist

top_artists(**data)→ List[spotify.models.artist.Artist]
Get the current user’s top artists based on calculated affinity.

Parameters

• limit (Optional[int]) – The number of entities to return. Default: 20. Mini-
mum: 1. Maximum: 50.

• offset (Optional[int]) – The index of the first entity to return. Default: 0

• time_range (Optional[str]) – Over what time frame the affinities are computed.
(long_term, short_term, medium_term)

Returns tracks – The top artists for the user.

Return type List[Artist]

top_tracks(**data)→ List[spotify.models.track.Track]
Get the current user’s top tracks based on calculated affinity.

Parameters

1.1. Quick example 31

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

• limit (Optional[int]) – The number of entities to return. Default: 20. Mini-
mum: 1. Maximum: 50.

• offset (Optional[int]) – The index of the first entity to return. Default: 0

• time_range (Optional[str]) – Over what time frame the affinities are computed.
(long_term, short_term, medium_term)

Returns tracks – The top tracks for the user.

Return type List[Track]

Playlist

class spotify.Playlist(client: spotify.Client, data: Union[dict, Playlist], *, http: Op-
tional[spotify.http.HTTPClient] = None)

A Spotify Playlist.

collaborative
Returns true if context is not search and the owner allows other users to modify the playlist. Otherwise
returns false.

Type bool

description
The playlist description. Only returned for modified, verified playlists, otherwise null.

Type str

url
The open.spotify URL.

Type str

followers
The total amount of followers

Type int

href
A link to the Web API endpoint providing full details of the playlist.

Type str

id
The Spotify ID for the playlist.

Type str

images
Images for the playlist. The array may be empty or contain up to three images. The images are returned
by size in descending order. If returned, the source URL for the image (url) is temporary and will expire
in less than a day.

Type List[spotify.Image]

name
The name of the playlist.

Type str

owner
The user who owns the playlist

32 Chapter 1. What is spotify.py?

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

Type spotify.User

public

The playlist’s public/private status: true the playlist is public, false the playlist is private, null the
playlist status is not relevant.

Type :class‘bool‘

snapshot_id
The version identifier for the current playlist.

Type str

tracks
A tuple of PlaylistTrack objects or None.

Type Optional[Tuple[PlaylistTrack]]

add_tracks(*tracks)→ str
Add one or more tracks to a user’s playlist.

Parameters tracks (Iterable[Union[str, Track]]) – Tracks to add to the playlist

Returns snapshot_id – The snapshot id of the playlist.

Return type str

clear()
Clear the playlists tracks.

Note: This method will mutate the current playlist object, and the spotify Playlist.

Warning: This is a desctructive operation and can not be reversed!

copy()→ spotify.models.playlist.Playlist
Return a shallow copy of the playlist object.

Returns playlist – The playlist object copy.

Return type Playlist

extend(tracks: Union[Playlist, Iterable[Union[spotify.models.track.Track, str]]])
Extend a playlists tracks with that of another playlist or a list of Track/Track URIs.

Note: This method will mutate the current playlist object, and the spotify Playlist.

Parameters tracks (Union["Playlist", List[Union[Track, str]]]) –

Tracks to add to the playlist, acceptable values are:

• A spotify.Playlist object

• A list of spotify.Track objects or Track URIs

Returns snapshot_id – The snapshot id of the playlist.

Return type str

1.1. Quick example 33

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

get_all_tracks()→ Tuple[spotify.models.track.PlaylistTrack, ...]
Get all playlist tracks from the playlist.

Returns tracks – The playlists tracks.

Return type Tuple[PlaylistTrack]

get_tracks(*, limit: Optional[int] = 20, offset: Optional[int] = 0) → Tu-
ple[spotify.models.track.PlaylistTrack, ...]

Get a fraction of a playlists tracks.

Parameters

• limit (Optional[int]) – The limit on how many tracks to retrieve for this
playlist (default is 20).

• offset (Optional[int]) – The offset from where the api should start from in
the tracks.

Returns tracks – The tracks of the playlist.

Return type Tuple[PlaylistTrack]

insert(index, obj: Union[spotify.models.track.PlaylistTrack, spotify.models.track.Track])→ None
Insert an object before the index.

Note: This method will mutate the current playlist object, and the spotify Playlist.

pop(index: int = -1)→ spotify.models.track.PlaylistTrack
Remove and return the track at the specified index.

Note: This method will mutate the current playlist object, and the spotify Playlist.

Returns playlist_track – The track that was removed.

Return type PlaylistTrack

Raises IndexError – If there are no tracks or the index is out of range.

remove(value: Union[spotify.models.track.PlaylistTrack, spotify.models.track.Track])→ None
Remove the first occurence of the value.

Note: This method will mutate the current playlist object, and the spotify Playlist.

Raises ValueError – If the value is not present.

remove_tracks(*tracks)
Remove one or more tracks from a user’s playlist.

Parameters tracks (Iterable[Union[str, Track]]) – Tracks to remove from the playlist

Returns snapshot_id – The snapshot id of the playlist.

Return type str

reorder_tracks(start: int, insert_before: int, length: int = 1, *, snapshot_id: Optional[str] =
None)→ str

Reorder a track or a group of tracks in a playlist.

34 Chapter 1. What is spotify.py?

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#IndexError
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

Parameters

• start (int) – The position of the first track to be reordered.

• insert_before (int) – The position where the tracks should be inserted.

• length (Optional[int]) – The amount of tracks to be reordered. Defaults to 1
if not set.

• snapshot_id (str) – The playlist’s snapshot ID against which you want to make
the changes.

Returns snapshot_id – The snapshot id of the playlist.

Return type str

replace_tracks(*tracks)→ None
Replace all the tracks in a playlist, overwriting its existing tracks.

This powerful request can be useful for replacing tracks, re-ordering existing tracks, or clearing the
playlist.

Parameters tracks (Iterable[Union[str, Track]]) – Tracks to place in the playlist

reverse()→ None
Reverse the playlist in place.

Note: This method will mutate the current playlist object, and the spotify Playlist.

sort(*, key: Optional[Callable[[spotify.models.track.PlaylistTrack], bool]] = None, reverse: Op-
tional[bool] = False)→ None

Stable sort the playlist in place.

Note: This method will mutate the current playlist object, and the spotify Playlist.

uri
str(object=”) -> str str(bytes_or_buffer[, encoding[, errors]]) -> str

Create a new string object from the given object. If encoding or errors is specified, then the object must
expose a data buffer that will be decoded using the given encoding and error handler. Otherwise, returns
the result of object.__str__() (if defined) or repr(object). encoding defaults to sys.getdefaultencoding().
errors defaults to ‘strict’.

Player

class spotify.Player(client, user, data)
A Spotify Users current playback.

device
The device that is currently active.

Type spotify.Device

repeat_state
“off”, “track”, “context”

Type str

1.1. Quick example 35

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

shuffle_state
If shuffle is on or off.

Type bool

is_playing
If something is currently playing.

Type bool

enqueue(uri: Union[spotify.models.base.URIBase, str], device:
Union[spotify.models.common.Device, str, None] = None)

Add an item to the end of the user’s current playback queue.

Parameters

• uri (Union[spotify.URIBase, str]) – The uri of the item to add to the queue.
Must be a track or an episode uri.

• device_id (Optional[Union[Device, str]]) – The id of the device this command
is targeting. If not supplied, the user’s currently active device is the target.

next(*, device: Union[spotify.models.common.Device, str, None] = None)
Skips to next track in the user’s queue.

Parameters device (Optional[SomeDevice]) – The Device object or id of the device this
command is targeting. If not supplied, the user’s currently active device is the target.

pause(*, device: Union[spotify.models.common.Device, str, None] = None)
Pause playback on the user’s account.

Parameters device (Optional[SomeDevice]) – The Device object or id of the device this
command is targeting. If not supplied, the user’s currently active device is the target.

play(*uris, offset: Union[int, str, spotify.models.track.Track, None] = 0, device:
Union[spotify.models.common.Device, str, None] = None)

Start a new context or resume current playback on the user’s active device.

The method treats a single argument as a Spotify context, such as a Artist, Album and playlist objects/URI.
When called with multiple positional arguments they are interpreted as a array of Spotify Track ob-
jects/URIs.

Parameters

• *uris (SomeURI) – When a single argument is passed in that argument is treated
as a context (except if it is a track or track uri). Valid contexts are: albums, artists,
playlists. Album, Artist and Playlist objects are accepted too. Otherwise when mul-
tiple arguments are passed in they, A sequence of Spotify Tracks or Track URIs to
play.

• offset (Optional[Offset]) – Indicates from where in the context playback should
start. Only available when context corresponds to an album or playlist object, or when
the uris parameter is used. when an integer offset is zero based and can’t be negative.

• device (Optional[SomeDevice]) – The Device object or id of the device this com-
mand is targeting. If not supplied, the user’s currently active device is the target.

previous(*, device: Union[spotify.models.common.Device, str, None] = None)
Skips to previous track in the user’s queue.

Note that this will ALWAYS skip to the previous track, regardless of the current track’s progress. Return-
ing to the start of the current track should be performed using seek()

36 Chapter 1. What is spotify.py?

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

Parameters device (Optional[SomeDevice]) – The Device object or id of the device this
command is targeting. If not supplied, the user’s currently active device is the target.

resume(*, device: Union[spotify.models.common.Device, str, None] = None)
Resume playback on the user’s account.

Parameters device (Optional[SomeDevice]) – The Device object or id of the device this
command is targeting. If not supplied, the user’s currently active device is the target.

seek(pos, *, device: Union[spotify.models.common.Device, str, None] = None)
Seeks to the given position in the user’s currently playing track.

Parameters

• pos (int) – The position in milliseconds to seek to. Must be a positive number.
Passing in a position that is greater than the length of the track will cause the player
to start playing the next song.

• device (Optional[SomeDevice]) – The Device object or id of the device this com-
mand is targeting. If not supplied, the user’s currently active device is the target.

set_repeat(state, *, device: Union[spotify.models.common.Device, str, None] = None)
Set the repeat mode for the user’s playback.

Parameters

• state (str) – Options are repeat-track, repeat-context, and off

• device (Optional[SomeDevice]) – The Device object or id of the device this com-
mand is targeting. If not supplied, the user’s currently active device is the target.

set_volume(volume: int, *, device: Union[spotify.models.common.Device, str, None] = None)
Set the volume for the user’s current playback device.

Parameters

• volume (int) – The volume to set. Must be a value from 0 to 100 inclusive.

• device (Optional[SomeDevice]) – The Device object or id of the device this com-
mand is targeting. If not supplied, the user’s currently active device is the target.

shuffle(state: Optional[bool] = None, *, device: Union[spotify.models.common.Device, str, None] =
None)

shuffle on or off for user’s playback.

Parameters

• state (Optional[bool]) – if True then Shuffle user’s playback. else if False do
not shuffle user’s playback.

• device (Optional[SomeDevice]) – The Device object or id of the device this com-
mand is targeting. If not supplied, the user’s currently active device is the target.

transfer(device: Union[spotify.models.common.Device, str], ensure_playback: bool = False)
Transfer playback to a new device and determine if it should start playing.

Parameters

• device (SomeDevice) – The device on which playback should be
started/transferred.

• ensure_playback (bool) – if True ensure playback happens on new device. else
keep the current playback state.

1.1. Quick example 37

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

spotify.py, Release 0.10.2

Library

class spotify.Library(client, user)
A Spotify Users Library.

user
The user which this library object belongs to.

Type Spotify.User

check_saved_shows(*shows)→ List[bool]
Check if one or more shows is already saved in the current Spotify user’s library.

Parameters ids (List[:class: Show]) – A list of the spotify.Show or unique spotify ids.

Returns bools – A list of bool results whether the show is saved or not.

Return type List[bool]

contains_albums(*albums)→ List[bool]
Check if one or more albums is already saved in the current Spotify user’s ‘Your Music’ library.

Parameters albums (Union[Album, str]) – A sequence of artist objects or spotify IDs

contains_tracks(*tracks)→ List[bool]
Check if one or more tracks is already saved in the current Spotify user’s ‘Your Music’ library.

Parameters tracks (Union[Track, str]) – A sequence of track objects or spotify IDs

get_albums(*, limit=20, offset=0)→ List[spotify.models.album.Album]
Get a list of the albums saved in the current Spotify user’s ‘Your Music’ library.

Parameters

• limit (Optional[int]) – The maximum number of items to return. Default:
20. Minimum: 1. Maximum: 50.

• offset (Optional[int]) – The index of the first item to return. Default: 0

get_all_albums()→ List[spotify.models.album.Album]
Get a list of the albums saved in the current Spotify user’s ‘Your Music’ library.

Returns albums – The albums.

Return type List[Album]

get_all_podcasts()→ List[spotify.models.podcast.Podcast]
Get all of the users saved podcasts, shows from spotify.

Returns playlists – A list of the users podcasts.

Return type List[Podcast]

get_all_tracks()→ List[spotify.models.track.Track]
Get a list of all the songs saved in the current Spotify user’s ‘Your Music’ library.

Returns tracks – The tracks of the artist.

Return type List[Track]

get_tracks(*, limit=20, offset=0)→ List[spotify.models.track.Track]
Get a list of the songs saved in the current Spotify user’s ‘Your Music’ library.

Parameters

• limit (Optional[int]) – The maximum number of items to return. Default:
20. Minimum: 1. Maximum: 50.

38 Chapter 1. What is spotify.py?

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

spotify.py, Release 0.10.2

• offset (Optional[int]) – The index of the first item to return. Default: 0

remove_albums(*albums)
Remove one or more albums from the current user’s ‘Your Music’ library.

Parameters albums (Sequence[Union[Album, str]]) – A sequence of artist ob-
jects or spotify IDs

remove_saved_shows(*shows)
Delete one or more shows from current Spotify user’s library.

Parameters ids (List[:class: Show]) – A list of the spotify.Show or unique spotify ids.

Returns Result – An empty dictionary if the request is successful.

Return type Dict

remove_tracks(*tracks)
Remove one or more tracks from the current user’s ‘Your Music’ library.

Parameters tracks (Sequence[Union[Track, str]]) – A sequence of track ob-
jects or spotify IDs

save_albums(*albums)
Save one or more albums to the current user’s ‘Your Music’ library.

Parameters albums (Sequence[Union[Album, str]]) – A sequence of artist ob-
jects or spotify IDs

save_tracks(*tracks)
Save one or more tracks to the current user’s ‘Your Music’ library.

Parameters tracks (Sequence[Union[Track, str]]) – A sequence of track ob-
jects or spotify IDs

PlaylistTrack

class spotify.PlaylistTrack(client, data)
A Track on a Playlist.

Like a regular Track but has some additional attributes.

added_by
The Spotify user who added the track.

Type str

is_local
Whether this track is a local file or not.

Type bool

added_at
The datetime of when the track was added to the playlist.

Type datetime.datetime

Device

class spotify.Device(data)
A Spotify Users device.

1.1. Quick example 39

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime

spotify.py, Release 0.10.2

id
The device ID

Type str

name
The name of the device.

Type int

type
A Device type, such as “Computer”, “Smartphone” or “Speaker”.

Type str

volume
The current volume in percent. This may be null.

Type int

is_active
if this device is the currently active device.

Type bool

is_restricted
Whether controlling this device is restricted. At present if this is “true” then no Web API commands will
be accepted by this device.

Type bool

is_private_session
If this device is currently in a private session.

Type bool

Context

class spotify.Context(data)
A Spotify Context.

type
The object type, e.g. “artist”, “playlist”, “album”.

Type str

href
A link to the Web API endpoint providing full details of the track.

Type str

external_urls
External URLs for this context.

Type str

uri
The Spotify URI for the context.

Type str

40 Chapter 1. What is spotify.py?

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

Image

class spotify.Image(*, height: str, width: str, url: str)
An object representing a Spotify image resource.

height
The height of the image.

Type str

width
The width of the image.

Type str

url
The URL of the image.

Type str

Exceptions

SpotifyException

class spotify.SpotifyException
Base exception class for spotify.py.

HTTPException

class spotify.HTTPException(response, message)
A generic exception that’s thrown when a HTTP operation fails.

Forbidden

class spotify.Forbidden(response, message)
An exception that’s thrown when status code 403 occurs.

NotFound

class spotify.NotFound(response, message)
An exception that’s thrown when status code 404 occurs.

1.1. Quick example 41

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

spotify.py, Release 0.10.2

42 Chapter 1. What is spotify.py?

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

43

spotify.py, Release 0.10.2

44 Chapter 2. Indices and tables

Index

A
add_playlist_tracks() (spotify.HTTPClient

method), 10
add_tracks() (spotify.Playlist method), 33
add_tracks() (spotify.User method), 28
added_at (spotify.PlaylistTrack attribute), 39
added_by (spotify.PlaylistTrack attribute), 39
Album (class in spotify), 24
album() (spotify.HTTPClient method), 10
album_group (spotify.Album attribute), 24
album_tracks() (spotify.HTTPClient method), 10
album_type (spotify.Album attribute), 25
albums() (spotify.HTTPClient method), 10
Artist (class in spotify), 26
artist() (spotify.HTTPClient method), 11
artist_albums() (spotify.HTTPClient method), 11
artist_related_artists() (spotify.HTTPClient

method), 11
artist_top_tracks() (spotify.HTTPClient

method), 11
artists (spotify.Album attribute), 24
artists() (spotify.HTTPClient method), 11
audio_features() (spotify.HTTPClient method), 11
available_devices() (spotify.HTTPClient

method), 11

B
birthdate (spotify.User attribute), 28

C
categories() (spotify.HTTPClient method), 11
category() (spotify.HTTPClient method), 12
category_playlists() (spotify.HTTPClient

method), 12
change_playlist_details() (spo-

tify.HTTPClient method), 12
check_saved_shows() (spotify.HTTPClient

method), 12
check_saved_shows() (spotify.Library method), 38

clear() (spotify.Playlist method), 33
Client (class in spotify), 6
client_id (spotify.Client attribute), 7
client_id (spotify.HTTPClient attribute), 10
client_secret (spotify.HTTPClient attribute), 10
close() (spotify.Client method), 7
close() (spotify.HTTPClient method), 12
collaborative (spotify.Playlist attribute), 32
contains_albums() (spotify.Library method), 38
contains_tracks() (spotify.Library method), 38
Context (class in spotify), 40
copy() (spotify.Playlist method), 33
copyrights (spotify.Album attribute), 25
country (spotify.User attribute), 28
create_playlist() (spotify.HTTPClient method),

12
create_playlist() (spotify.User method), 28
current_player() (spotify.HTTPClient method), 13
current_playlists() (spotify.HTTPClient

method), 13
current_user() (spotify.HTTPClient method), 13
currently_playing() (spotify.HTTPClient

method), 13
currently_playing() (spotify.User method), 29

D
delete_saved_albums() (spotify.HTTPClient

method), 13
delete_saved_tracks() (spotify.HTTPClient

method), 13
description (spotify.Playlist attribute), 32
Device (class in spotify), 39
device (spotify.Player attribute), 35
display_name (spotify.User attribute), 28

E
edit_playlist() (spotify.User method), 29
email (spotify.User attribute), 28
enqueue() (spotify.Player method), 36

45

spotify.py, Release 0.10.2

extend() (spotify.Playlist method), 33
external_urls (spotify.Context attribute), 40

F
featured_playlists() (spotify.HTTPClient

method), 13
follow_artist_or_user() (spotify.HTTPClient

method), 14
follow_playlist() (spotify.HTTPClient method),

14
follow_playlist() (spotify.User method), 29
followed_artists() (spotify.HTTPClient method),

14
followers (spotify.Artist attribute), 26
followers (spotify.Playlist attribute), 32
followers (spotify.User attribute), 28
following_artists_or_users() (spo-

tify.HTTPClient method), 14
following_playlists() (spotify.HTTPClient

method), 14
Forbidden (class in spotify), 41
from_code() (spotify.User class method), 29
from_refresh_token() (spotify.User class

method), 29
from_token() (spotify.User class method), 29

G
genres (spotify.Album attribute), 25
genres (spotify.Artist attribute), 26
get_album() (spotify.Client method), 7
get_albums() (spotify.Artist method), 26
get_albums() (spotify.Client method), 7
get_albums() (spotify.Library method), 38
get_all_albums() (spotify.Artist method), 27
get_all_albums() (spotify.Library method), 38
get_all_playlists() (spotify.User method), 30
get_all_podcasts() (spotify.Library method), 38
get_all_tracks() (spotify.Album method), 25
get_all_tracks() (spotify.Library method), 38
get_all_tracks() (spotify.Playlist method), 33
get_artist() (spotify.Client method), 7
get_artists() (spotify.Client method), 7
get_bearer_info() (spotify.HTTPClient method),

14
get_devices() (spotify.User method), 30
get_episode() (spotify.Client method), 8
get_episode() (spotify.HTTPClient method), 14
get_multiple_episodes() (spotify.HTTPClient

method), 14
get_multiple_shows() (spotify.Client method), 8
get_multiple_shows() (spotify.HTTPClient

method), 15
get_player() (spotify.User method), 30
get_playlist() (spotify.HTTPClient method), 15

get_playlist_cover_image() (spo-
tify.HTTPClient method), 15

get_playlist_tracks() (spotify.HTTPClient
method), 15

get_playlists() (spotify.HTTPClient method), 16
get_playlists() (spotify.User method), 30
get_podcasts() (spotify.User method), 30
get_saved_shows() (spotify.HTTPClient method),

16
get_show() (spotify.HTTPClient method), 16
get_shows_episodes() (spotify.HTTPClient

method), 16
get_track() (spotify.Client method), 8
get_tracks() (spotify.Album method), 25
get_tracks() (spotify.Library method), 38
get_tracks() (spotify.Playlist method), 34
get_user() (spotify.Client method), 8

H
height (spotify.Image attribute), 41
href (spotify.Album attribute), 24
href (spotify.Artist attribute), 26
href (spotify.Context attribute), 40
href (spotify.Playlist attribute), 32
href (spotify.User attribute), 27
http (spotify.Client attribute), 7
HTTPClient (class in spotify), 9
HTTPException (class in spotify), 41

I
id (spotify.Album attribute), 24
id (spotify.Artist attribute), 26
id (spotify.Client attribute), 8
id (spotify.Device attribute), 39
id (spotify.Playlist attribute), 32
id (spotify.User attribute), 27
Image (class in spotify), 41
images (spotify.Artist attribute), 26
images (spotify.Playlist attribute), 32
images (spotify.User attribute), 28
insert() (spotify.Playlist method), 34
is_active (spotify.Device attribute), 40
is_local (spotify.PlaylistTrack attribute), 39
is_playing (spotify.Player attribute), 36
is_private_session (spotify.Device attribute), 40
is_restricted (spotify.Device attribute), 40
is_saved_album() (spotify.HTTPClient method), 16
is_saved_track() (spotify.HTTPClient method), 17

L
label (spotify.Album attribute), 25
Library (class in spotify), 38
loop (spotify.Client attribute), 7
loop (spotify.HTTPClient attribute), 10

46 Index

spotify.py, Release 0.10.2

M
markets (spotify.Album attribute), 25

N
name (spotify.Album attribute), 24
name (spotify.Artist attribute), 26
name (spotify.Device attribute), 40
name (spotify.Playlist attribute), 32
new_releases() (spotify.HTTPClient method), 17
next() (spotify.Player method), 36
NotFound (class in spotify), 41

O
oauth2_url() (spotify.Client method), 8
owner (spotify.Playlist attribute), 32

P
pause() (spotify.Player method), 36
pause_playback() (spotify.HTTPClient method), 17
play() (spotify.Player method), 36
play_playback() (spotify.HTTPClient method), 17
playback_queue() (spotify.HTTPClient method), 17
Player (class in spotify), 35
Playlist (class in spotify), 32
PlaylistTrack (class in spotify), 39
pop() (spotify.Playlist method), 34
popularity (spotify.Album attribute), 25
popularity (spotify.Artist attribute), 26
previous() (spotify.Player method), 36
product (spotify.User attribute), 28
public (spotify.Playlist attribute), 33

R
recently_played() (spotify.HTTPClient method),

17
recently_played() (spotify.User method), 30
recommendations() (spotify.HTTPClient method),

18
related_artists() (spotify.Artist method), 27
release_date (spotify.Album attribute), 25
release_date_precision (spotify.Album at-

tribute), 25
remove() (spotify.Playlist method), 34
remove_albums() (spotify.Library method), 39
remove_playlist_tracks() (spotify.HTTPClient

method), 18
remove_saved_shows() (spotify.HTTPClient

method), 19
remove_saved_shows() (spotify.Library method),

39
remove_tracks() (spotify.Library method), 39
remove_tracks() (spotify.Playlist method), 34
remove_tracks() (spotify.User method), 30

reorder_playlists_tracks() (spo-
tify.HTTPClient method), 19

reorder_tracks() (spotify.Playlist method), 34
reorder_tracks() (spotify.User method), 31
repeat_playback() (spotify.HTTPClient method),

19
repeat_state (spotify.Player attribute), 35
replace_playlist_tracks() (spo-

tify.HTTPClient method), 20
replace_tracks() (spotify.Playlist method), 35
replace_tracks() (spotify.User method), 31
request() (spotify.HTTPClient method), 20
resume() (spotify.Player method), 37
reverse() (spotify.Playlist method), 35
route() (spotify.HTTPClient static method), 20

S
save_albums() (spotify.HTTPClient method), 20
save_albums() (spotify.Library method), 39
save_shows() (spotify.HTTPClient method), 20
save_tracks() (spotify.HTTPClient method), 20
save_tracks() (spotify.Library method), 39
saved_albums() (spotify.HTTPClient method), 20
saved_tracks() (spotify.HTTPClient method), 21
search() (spotify.Client method), 8
search() (spotify.HTTPClient method), 21
seek() (spotify.Player method), 37
seek_playback() (spotify.HTTPClient method), 22
set_playback_volume() (spotify.HTTPClient

method), 22
set_repeat() (spotify.Player method), 37
set_volume() (spotify.Player method), 37
shuffle() (spotify.Player method), 37
shuffle_playback() (spotify.HTTPClient method),

22
shuffle_state (spotify.Player attribute), 35
skip_next() (spotify.HTTPClient method), 22
skip_previous() (spotify.HTTPClient method), 22
snapshot_id (spotify.Playlist attribute), 33
sort() (spotify.Playlist method), 35
SpotifyException (class in spotify), 41

T
top_artists() (spotify.User method), 31
top_artists_or_tracks() (spotify.HTTPClient

method), 22
top_tracks() (spotify.Artist method), 27
top_tracks() (spotify.User method), 31
total_albums() (spotify.Artist method), 27
track() (spotify.HTTPClient method), 23
track_audio_analysis() (spotify.HTTPClient

method), 23
track_audio_features() (spotify.HTTPClient

method), 23

Index 47

spotify.py, Release 0.10.2

tracks (spotify.Playlist attribute), 33
tracks() (spotify.HTTPClient method), 23
transfer() (spotify.Player method), 37
transfer_player() (spotify.HTTPClient method),

23
type (spotify.Context attribute), 40
type (spotify.Device attribute), 40

U
unfollow_artists_or_users() (spo-

tify.HTTPClient method), 24
unfollow_playlist() (spotify.HTTPClient

method), 24
upload_playlist_cover_image() (spo-

tify.HTTPClient method), 24
uri (spotify.Album attribute), 24
uri (spotify.Artist attribute), 26
uri (spotify.Context attribute), 40
uri (spotify.Playlist attribute), 35
uri (spotify.User attribute), 27
url (spotify.Artist attribute), 26
url (spotify.Image attribute), 41
url (spotify.Playlist attribute), 32
url (spotify.User attribute), 27
User (class in spotify), 27
user (spotify.Library attribute), 38
user() (spotify.HTTPClient method), 24
user_from_token() (spotify.Client method), 9

V
volume (spotify.Device attribute), 40

W
width (spotify.Image attribute), 41

48 Index

	What is spotify.py?
	Quick example
	Introduction
	API

	Indices and tables
	Index

